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In the sequel, A4 will always denote a subset of the real line having at
least n+2 elements (n>0), I, =inf(A4), I, =sup(4), and I(4} will denote
the convex hull of A4 (thus for example, if A=[2,3)u (4, ©), then I{4)=
[2,©)); Z,={zg, ., z,} Will be a set of real valued functions defined
on A4; by S(Z,) we shall denote the linear span of Z,. We shall call Z, a
weak CebySev system (CebySev system), provided that Z, be linearly
independent on A4, and for every choice of n+1 points 7, of A, with
to<t;< ---<t,, det[z{t); i,j=0,..,n]20 (>0). If Z, is a (weak)
Cebysev system for k=0, .., n, then Z, will be called a (weak) Markov
system. A normalized—or normed—(weak) Markov system is a {weak)
Markov system Z, for which z,= 1. Markov systems are also called com-
plete CebySev systems (cf. Karlin and Studden [2]). We shall say that
U, = {uy, .., u,} has been obtained from Z, by a triangular linear transfor-
mation if u, = z,, and

uk—ZkES(Zk,l), k-:l, 2, ey L.

Note that if Z, is linearly independent then, for k=0, 1, .., n, U, is a basis
of S(Z,). We shall adopt the convention that if b<q, then [a, )=
(a,b]1=0.

In [6, Theorem 1] we gave an integral representation of Markov
systems. Recently Zielke [11] gave a counterexample and a corrected
version of this result, and generalized it to a class of normalized weak
Markov systems. The purpose of our paper is to extend the results of [11],
using a refinement of a new embedding property of normalized weak
Markov systems developed in [7].

A system Z, will be called nondegenerate if for every ¢ in 4, Z, is
linearly independent both on (—o0, c)n 4 and on (¢, 00)n 4, and it will
be called weakly nondegenerate provided that the following conditions are
satisfied:
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2 R. A. ZALIK

Condition1. For every real number ¢, Z, is linearly independent on at
least one of the sets (¢, ©)n 4 and (— o0, ¢) N A.

Condition E. For every point ¢ in I{4) we have:

(a) If Z, is linearly independent on [¢, c0) n A4, then there exists a set
U,, obtained from Z, by a triangular linear transformation, such that for
any sequence {k(r); r=0, .., m} with k(0)>0 and k(m)<n that is either
strictly increasing or contains exactly one element, the set {u,;
r=0,..,m} is a weak Markov system on [¢, ) 4.

(b) If Z, is linearly independent on (— oo, ¢c] M A, then there exists a
set V,, obtained from Z, by a triangular linear transformation, such that
for every sequence {k(r); r=0,..,m} with k£(0)>0 and k(m)<n that is
either strictly increasing or contains exactly one element, {(—1)" "y,
r=0, .., m} is a weak Markov system on (— o0, c] N 4.

Finally Z, will be called “representable” if for any point ¢ in 4 there exist
aset U,={ug, ..., u,}, obtained from Z, by a triangular linear transforma-
tion; a strictly increasing and bounded real function A(¢), defined on 4 and
such that h(c)=rc¢; and continuous, increasing, and nonconstant real
functions w(¢), defined on I(h(A4)), such that for all x in 4

uy=1

h(x)
w(x)=]" dwi(t)
C (1)

wl)= [ [ [ dwn) )

In [11], Zielke essentially proved that a nondegenerate normalized weak
Markov system is representable. Our main result is:

THEOREM 1. Every weakly nondegenerate normalized weak Markov
system is representable.

Remarks. (1) In the statement of [11, Theorem 3], Zielke asserts that
the representation (1) is valid for some point ¢, but in the proof of the
theorem he actually shows that a representation exists for any point ¢ in 4.
The distinction is, however, immaterial: If (1) is satisfied for some point ¢
in A4 it is easy to see that for any other point ¢’ in A there is a basis U,
of S(Z,), obtained from U, by a triangular linear transformation, having a
representation of the form (1) with ¢ replaced by ¢'.

(ii) It can be shown that every nondegenerate normalized weak Markov
system satisfies Condition E (this has essentially been done in the proof of



WEAK MARKOV SYSTEMS 3

[8, Theorem 27]). Thus, every nondegenerate normalized weak Markov
system is weakly nondegenerate. The converse, however, is false: Let u, = 1,
u(x)y=x on (0,1], u,(x)=1 on [1,2), and wu,(x)=[u,;(x)]* on (0, 2).
Then U,={uy, u;,u,} is a weakly nondegenerate normalized weak
Markov system on (0, 2). However U, is not nondegenerate there.

(iii} The converse of Theorem 1 is false: let #(z) =1z, w,(t)=10n (=1, 0},
wi(f)=t+1 on [0,1), wo(f)=¢t on (—1,0), and w,(¢})=0 on [0, 2). If
U, = {uy, 4, t,} has a representation of the form (1), it is readily seen that
u,=0on (—1,1)

We shall call Z, strongly representable if it is representable and all the
functions w (z) are strictly increasing on #(A4). We shall say that 4 has
property (B}, if for any two clements of 4 there is a third element of 4
between them. As a consequence of Theorem 1 we shall prove:

THEOREM 2. Let A have property (B) and assume that Z,, is weakly non-
degenerate. Then Z, is a normalized Markov system if and only if it is
strongly representable.

COROLLARY. Let A have property (B) and assume that Z,, is weakly nown-
degenerate. Then if Z,, is a normalized Markov system on A there is a func-
tion z,, . such that also Z,, {z,, |} is a normalized Markov system on A.

If Z, is 2 Markov system, it is obvious that Condition I is satisfied. If,
moreover, A satisfies property (B), it is easy to see that Condition E is
satisfied for any point in (/,, /,) n 4, making the assumption of weak non-
degeneracy redundant if neither /, nor I, are in A; thus this corollary
generalizes the main result of [97]. Since it is not known as yet under what
circumstances Condition E will be satisfied at an endpoint, it is at present
unclear whether the corollary also generalizes the main result of [5]. We
intend to study this problem in a later paper.

A system Z, is called C-bounded if every element of Z, is bounded on
the intersection of A4 with any compact subset of I{4); if A is an interval
and every element of Z,, is absolutely continuous in any closed subinterval
of A, we shall say that Z, is C-absolutely continuous. If ¥, = {vy, ..., v,}
is a set of real functions defined on a real set B we say that Z, can be
embedded in V', if there is a strictly increasing function A4: 4 — B such that
v,[A{(t)]=2z,t) for every te 4 and i=0, 1, .., n. The function 4 is called an
embedding function.

In the proof of Theorem 1 we shall need the following refinement of the
theorem of [77:

THEOREM 3. Let ¢ be an element of A. If Z,, is a weakly nondegenerate
normalized weak Markov system on A, then Z, can be embedded in a weakly
nondegenerate normalized weak Markov system V, of C-absolutely con-
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tinuous functions defined on an open bounded interval, and V, and the embed-
ding function h(t) can be chosen so that h(c)=c. Moreover if A satisfies
property (B), the converse statement is also true.

The proof of Theorem 3 is based on the following auxiliary propositions:

LemMmA 1. Let Z, be a weakly nondegenerate weak Markov system on a
set A, let p:A—R be a strictly increasing function, and let v.(t)=
z{p~(2)), r=0,..,n Then V, is a weakly nondegenerate weak Markov
system on p(A).

The proof of Lemma 1 is straightforward and will be omitted.

LemMa 2. Let [a, b be a closed bounded interval. Assume that f is a
continuous function of bounded variation and that g is a strictly increasing
continuous function, both defined on [a,b]. For a<a < <b, let V(f, o, B)
denote the total variation of f on [a, B]. Let ce€ [a, b] be arbitrary but fixed,
and define o(f, t) to equal V(f,c,t) on [c,b] and —V(f, t,c) on [a,c).
Finally, let q(t)= g(t)+ v(f, t) and h(t)= fLq~ ()] Then h(¢) is absolutely
continuous on {g(a), g(b)].

Proof of Lemma 2. The hypotheses imply that ¢(¢) is strictly increasing
and continuous; thus ¢ '(¢) is strictly increasing on [g(a), g(b)]. If
a<s; <s;<b, then |f(s;)— fs))] < VU, 81, 82) = o(f, s2)—v(f, 1) <
v(f, 52) — o/, 51) + g(s2) — gls1) = q(s2) —gq(s1).  Thus, if  (ay, Bi),
(a3, f2), - (a,, B,) are disjoint subintervals of [g(a), g(b)] we have

S 1(B) — k) = 3 17 Tg~ (B —FTq~ ()]l
=1 i=1

<3 (qla " B)1—ala~ @)D= 3. (Bi—a)
i=1 =

and the conclusion follows. Q.E.D.

The following lemma implies that every weakly nondegenerate nor-
malized weak Markov system is C-bounded:

LemMa 3. Let U,= {uqy, .., u,} be a weakly nondegenerate normalized
weak Markov system on a set A, let [, =inf(A), [, =sup(A4), ce I[(A), and let
u be any function in S(U,).

(a) If ¢>1, and ¢ is a point of accumulation of (l,,c)n A, then
lim, , .- u(?) exists and is finite.

(b) If c<1l, and c is a point of accumulation of (c,l,)N A, then
Him,_, .+ u(t) exists and is finite.
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Proof. We only prove (a); the proof of (b) is similar and will be
omitted.

We proceed by induction. The assertion is trivially true for n=0. To
prove the inductive step, assume that for any function w in S(U,_,) (where
U,_ 1= {ug, o ty_1}), lim, , - w(¢) exists and is finite. If U, is linearly
independent on (—oo, ¢)n A there is a number de 4 such that d>c.
Indeed, this is obvious if ¢ </,, whereas if ¢ =1/, we can take d=1,. Since
clearly U, is linearly independent on (— oo, d]n A4, by Condition E we
conclude that there is a function u=wu, + w, with we S(U,_,), such that «
is monotonic on (—o0,d]n A, whence the conclusion readily follows.
Assume now that U, is linearly dependent on (— o0, ¢) " A. Condition I
then implies that U, is inearly independent on (c, o) ~ 4, and therefore on
any set of the form (d’, )N A4, d’ < ¢. Another application of Condition E
readily yields the conclusion for this case as well. Q.E.D.

The proof of the next proposition was sketched in [7].

LemMa 4. Let Z, be a normalized weak Markov system of bounded
Sfunctions defined on a closed interval I="[a, b]. Then all the elements of
S(Z,) are of bounded variation on I.

Proof. Let z be a function in S(Z,), arbitrary but fixed, let y be any real
number, and let v(y) denote the number of sign changes of z(¢) —y. Since
[10, p. 12, Lemma 4.1] implies that v(y) <#», and the boundedness of z(¢)
implies that »(y) has bounded support, the conclusion follows from, e.g.,
(4, p. 257, Theorem 6]. Q.E.D.

LemMMa 5. Let Z, be a weakly nondegenerate normalized weak Markov
system defined on an interval I (open, closed, or semiopen), and let cel. If
z, Is continuous ait c, then all the elements of S(Z,) are continuous at c.

Proof. We shall only prove that if ¢>inf(/), then all the elements of
S(Z,) are left-continuous at ¢. The proof of the other case is similar and
will be omitted.

We proceed by induction on n For n=1 the assertion is true by
hypothesis; assume therefore that n > 1.

If Z, is linearly independent on S;=(—o0,c]nI, then from Condi-
tion E we readily conclude that there is a set U,, obtained from Z, by a
triangular linear transformation, such that both {1,(—1)""'u,} and
{1, uy, (—1)"u,} are weak Markov systems on S,. The first assertion is
equivalent to saying that (—1)""'u, is increasing on §,, from which we
conclude that (—1)""'u,(c7)<(—1)""'u,(c). The linear independence
implies that there is a point ¢, in (—o00, ¢)n 1 such that u,(t;) <u{c})
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Assume that z, < t < ¢; then, subtracting the second column from the third,
we have

1 1 1
0< uy(to) uy (1) uy(c)
(=1)"u,(to) (=1)'un(t) (—1)'u,(c)
1 1 0

=(=1)"|ulto) uy(t) ui(c)—uylr)
un(to) (1) uy(c)—uy(r)

Since u,(¢) is continuous at ¢, passing to the limit we have

1 1 0
0<(—1)" ui(to)  uylc) 0
un(tO) un(c—) un(c) - un(c— )

= (=1)"[ue) —us(to) Jun(c) —unlc™)],

whence we conclude that (—1)""'u,(c) < (—1)""'u,(c™). We have there-
fore shown that u,(¢) is left-continuous at ¢. Since u,=z,+w, with
we S(Z,_,), applying the inductive hypothesis we conclude that also z,, is
left-continuous at c.

If Z, is linearly dependent on (— oo, c]n 1, from Condition I we con-
clude that Z, must be linearly independent on (¢, o) NI Thus, if 4 is an
arbitrary but fixed point in (— o0, ¢) N 7, it is clear that Z,, is linearly inde-
pendent on J,=[d, c0o)n I, whence by Condition E there is a set V,,
obtained from Z, by a triangular linear transformation, such that both
{1,v,} and {1,v,,v,} are normalized weak Markov systems on J,. The
first assertion is equivalent to saying that v, is increasing on J,, from
which we conclude that v,(c™)<wv,(c). The linear independence implies
that there is a point #; in (¢, o0) I such that v,(c)<v,(¢;). Choosing
t<c and proceeding as in the preceding paragraph, we deduce that
[v{c™)—vc)]Lv.(t)—0v,(c)] =0, whence v,(c) <v,(c™ ), and the conclu-
sion readily follows. Q.E.D.

Proof of Theorem 3. Assume that Z, is a weakly nondegenerate
normalized weak Markov system.

From [7] we know that Z, can be embedded in a normalized weak
Markov system U,= {u,, .., u,} of continuous functions defined on an
open interval (@, b,), and such that if 4 is the embedding function then
h(c)=c.

Assuming now that Z, is weakly nondegenerate, we shall adapt the
procedure outlined in the proof of the theorem of [7] to show that U, is
also weakly nondegenerate.
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Let S= {s,;} denote the set of points of accumulation of 4 at which z,(¢)
has jump discontinuities. If 5,6 S (/;, ],), let d,;=27*; on the other hand
if s,ed, let a,=2"*Vif z (s*)~z,(s;) #0, and 0 otherwise. If 5s,=/; and
lied, let d=a,=|z(s)—z(s,)|, whereas if s,=1, and /,e 4, we define
a;=|z,(s,)—z,(s,7)|. Let g(t)=1+2,.,d; if teA but 1¢S5, whereas for
1,€An S we define g(1;)=1,+ (2, -, d) +a,. It is clear that g(z) is strictly
increasing. (Note that there is a typographical error in the definitions of «,
and B, in [7]. They should be defined in a manner similar to that of g,
above.)

Setting z{9(¢) =z, [¢'(¢)], we infer from Lemma 1 that Z% is weakly
nondegenerate on 4® = g(A4). Moreover, it has the property that z{» is
either continuous or has a removabie discontinuity at every point of
accumulation of 4.

Let /@ =inf(4©), 1{9 =sup(4©). If /{7 belongs to 4¥, define z!V to
equal zO(/,) on (—o0, I{?); if I{ belongs to 4¥, define z(" to equal
2O on (189, w0); moreover, let z(M =z on A9, Clearly ZV is a
weakly nondegenerate normalized weak Markov system defined on a set
AW that has no first nor last element. Let /(") =inf(4V), I{V =sup(4 V),
and let A denote the closure of A in the relative topology of
I=(IM, 1fV). If x is in A" but not in A1, define z¥(x)=lim, _, .- z{V(¢),
r=0,..,n, if x is a point accumulation of (—o0, x}n A, or z¥(x)=
lim, , +z9(¢), r=0,..n if it is not (this can be done because of
Lemma 3), whereas for x in 4D, let zP(x)=2"(x). Clearly Z? is a
normalized weak Markov system on 4.

It is readily seen that Z'» is weakly nondegenerate on A To prove
Condition I for Z%), assume, e.g, that Z{» is linearly dependent on
[c, ©)nAY. From ConditionI for Z!" we readily infer that Z is
linearly independent on (— oo, ¢]n A", which clearly implies that Z» is
linearly independent on (— o0, c] N A", To prove Condition E, assume,
for example, that Z is linearly independent on [c, c0)n 4. Let de 4™,
d < ¢ be arbitrary but fixed. Since Z{" is clearly linearly independent on
[d, ©)n A, applying Condition E to ZV on [d, 0)n A" and passing
to the limit, Condition E for Z$) on [c, o) n A readily follows.

Clearly the complementary set of AV in (/{V, I{D), if not empty, is a dis-
joint union of open intervals V;; moreover if ¢, =inf(V},) and d, = sup(V,),
then both ¢, and d; are in 4. Let w, be defined on I as follows: If te 4™,
then w,(t)=z™(r). On the other hand, if t¢ A", then ¢, <t < d, for some
i. In this case, define w.(¢)=[(d;—1)zP(c;)+ (1—c,) zP(d)]/(d,—¢,).
(Note that r=[(d;—t)c;,+(t—c;)d1/(d;—c;).) Tt is readily seen that
W, = {wo, . W,} is a normalized weakly nondegenerate weak Markov
system defined on the open interval L Since z{? is clearly continuous on
AN, and w, is obtained from it by linear interpolation, we readily deduce
that w, is continuous on I. Applying Lemma 5, we thus conclude that all
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the elements of W, are continuous on I. We have therefore shown that Z,
can be embedded in a weakly nondegenerate normalized weak Markov
system W, of continuous functions defined on an open interval I
Moreover, from Lemma4 we know that the elements of S(W,) are of
bounded variation on every closed subinterval of I. Thus, if the functions
v(w,, t) are defined as in Lemma?2, p(t)=t+>5%_,v(wg, 1), I,=p(),
w()=w,[p~1 ()], i=0,1,2,..,n and W= {w, w¥), ., wd}, it is
readily seen from Lemmas 1 and 2 that WV is a weakly nondegenerate
normalized weak Markov system of C-absolutely continuous functions on
I,. Thus, there is a strictly increasing function /() that embeds Z, into
W, Setting py(1)=c—h(c)+1, hy(t)=p,[h(1)], wP()=w[pi (1)1,
and WP = {w, .., w?}, it is easy to see that h,(¢) embeds Z, into W,
and that %,(c¢)=c. Making if necessary a change of variable of the form
¢+ arctan(z— ¢) to ensure the boundedness of the domain of the elements
of W@, the conclusion readily follows.

The proof of the converse is trivial and will be omitted. Q.E.D.

To prove Theorem 1 we also need the following:

LemMMA 6. Let U,={ugy,..,u,} be a weakly nondegenerate weak
Markov system on an interval (a, b). If for some c in (a, b), uy(c)=0, then
u(c)=0,k=12,..,n

Proof. We proceed by induction on n. For n=0 the assertion is true by
hypothesis. To prove the inductive step, assume first that U, is linearly
independent on (a, ¢). Then from Conditon E we readily conclude that
there is a set V,, obtained from U, by a triangular linear transformation,
such that both {(—1)",} and {v,, (—1)"*'v,} are weak Markov systems
on (a, ¢]. From the first condition we conclude that (—1)"v,(c)>0. The
linear independence implies that there is a point t,e(a, c¢), such that
vol2o) #0. Applying the second condition we readily deduce that v,(z,) >0
and that vy(£,)(—1)""'v,(c)=0. Thus (—1)"v,(c)<0, and the assertion
readily follows.

If U, is linearly dependent on (a4, ¢), from Condition I we deduce that it
must be linearly independent on (¢, b), and the assertion is proved by a
similar procedure. Q.E.D.

Proof of Theorem1. Let Z, be a weakly nondegenerate normalized
weak Markov system. Without loss of generality we can assume that
z{c)=0, i=1,..,n From Theorem 3 we know that there is a strictly
increasing function p: 4 — (a,, b,) and a weakly nondegenerate normalized
weak Markov system {qo, .., q,} of C-absolutely continuous functions
defined on (a,, b,), such that z,=gq,op, i=0,..,n, and p(c)=c. Clearly
g(c)=0, i=1, .., n; moreover, if D is the set of points on which the func-
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tions g, are differentiable, then the measure of D equals 5, —a,. Let I be a
subinterval of (ay, b;), and let {k(r); r=0,..,m} be a strictly increasing
sequence with k£(0)=0, k(1) > 1, and k(m) < n. Since the functions ¢ {t) are
C-absolutely continuous, it is readily seen that {gi.,; r=1,..,m} is
linearly dependent on In D if and only if {q4,); r=0, .., m} is linearly
dependent on I. Thus, proceeding as in [ 10, Theorem 11.3(b)] we readily
infer that Q,_,={q}, .., q,} is a weakly nondegenerate weak Markov
system on D; thus if S is the subset of D on which ¢} #0, and m, = g}/q},
from Lemma 6 we readily deduce that M,_, = {m,, .. m,} is a weakly
nondegenerate normalized weak Markov system on S.

Let a,=1nf(S), b,=sup(S), and assume for instance that a,>a, and
b, < b;. This implies that ¢i(¢)=0 on (a,, a,)nD and on (b,,b,)nD. In
particular, ConditionI implies that Q,_, is linearly independent on
(ay, 5,1 D. Thus Condition E implies that there is a system R,_;=
{rys .. r,}, obtained from Q;_, by a triangular linear transformation, such
that {(—1)"'r,} and {r,, (=1)'r,}, i=2, .., n, are weak Markov systems
on D. Since r,=¢g} >0 on S, this means that (—1)7/r, is both increasing
and nonpositive (and therefore bounded from above) on §. Setting
u;=r;/ry on § and w1)=1lim,_, .- r(2)/ri(t) on [b,,b,), 1t is clear that
U,={uy, ., u,} is a weakly nondegenerate weak Markov system on
Sub,, b,). This means that there is a weakly nondegenerate normalized
weak Markov system M | = {m{®, .., m} on Su [b,, b,) that coincides
with M, _, on S, and such that the functions m” are constant on [b,, b,).
Applying Condition E again and using a similar procedure, it is easy to se¢
that M? | can be extended to the left; ie., there exists a weakly non-
degenerate normalized weak Markov system MV = {m!}), ., m"} that
coincides with M, _, on S, and such that the functions m{"’ are constant
on (ay,a,] and on [b,, b,). Proceeding as in the proof of Theorem 3 we
readily see that there is a weakly nondegenerate normalized weak Markov
system V,_, = {v,, .., v,} on (a,, b,) that coincides with M, ; on S. Since
Lemma 6 implies that all the functions ¢, vanish on D — S, we conclude
that ¢g/(¢) = ¢ (¢) v{z) for every ¢t in D and i=1, .., n. It is therefore clear
that for every x in (a,, b,),

7ix) = j it d,  i=1,.n )

The proof is completed by induction. For n=1 the assertion of the theorem
follows from (2). We now proceed to the proof of the inductive step.

By inductive hypothesis there is a basis {&, ..., 7,,} of the linear span of
{vy, . Uy}, such that for i=1, .., n and x € (ay, b,), 7(x) = p,[h(x)], where

phy = [T [ ) dwafa),
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h(x) is strictly increasing and bounded on (a,, b;), #(c)=c, and the func-
tions w; are continuous and increasing on (h(ai"), h(b;)). There is no loss
of generality if we assume that #,=v,, i=1, .., n. It is clear that the inverse
function of » can be extended to an increasing (but not necessarily strictly
increasing) function g, continuous on (4(a;"), A(b7 )); thus since the func-
tions p(x) are continuous, setting w,(x) =[5 ¢/(¢)dr and applying [1,
p. 182, Lemma 8(f); 3, p. 368, Theorem 1] we easily conclude that g(x)=
2 p (1) dw,(¢), whence the assertion readily follows. Q.ED.

Proof of Theorem?2. From Theorem 1 we know that Z, is represen-
table. Let U,= {u,, .., u,} be a basis of S(Z,) having the representation
(1). One easily sees (as in [5, Lemma 27) that U, is a normalized Markov
system on A.

Assume that for some k, w,(t) is constant on some subinterval I of
I{(h(A)) that contains two points of A(A4). By an inductive procedure
involving the number of integrations we see that u.[h~!(¢)] can be
expressed as a linear combination of uy(h~'(¢)), ..., u,_(h~'(¢)) on I Thus
u, can be expressed as a linear combination of u,, ..., u,_, on A~*(). Since
h is strictly increasing and A has property (B), £~ '(I) has an infinite
number of points. Since U, is a CebySev system we have obtained a
contradiction.

To prove the converse, let U, be a basis having a representation of the
form (1), where the functions 2 and w; satisfy the hypotheses of the
theorem. For k=0, ..., n, let v,(x) =u, [h'(x)]; it suffices to prove that V,
is a normalized Markov system on A(A). Since h is strictly increasing, it is
clear h(A) has property (B). Thus, if {x,;i=0, .., n} is an arbitrary subset
of h(A4), with xq<x,< --- <x,, there is a subset {7,; i=1,..,n} of h(4)
with x,_, <f;<x;. We now proceed by induction. The assertion is clearly
trivial for n=0 and n=1. To prove the inductive step, let a=inf(h(4)),
b=sup(h(4)), and let £,(¢) be defined as follows: f =1, f5(¢)=[Ldw,(t,),
and for r=3,.,n, f(O)={.{2---{4"dwit,) - dwy(t,). Clearly v (x)=
{2 f.(t) dw,(r), r=1,..,n By inductive hypothesis {f;,.., f,} is a nor-
malized Markov system on A(A). In particular, this implies that for every
k,k=1,..,n, det[f(2); i, j=1, .., k]>0. By continuity we conclude that
for each i there is a subinterval J; of (x;_;, x,) such that if s, J, for each
i, then for each k, k=1, ..., n, det[ fi(s;); i, j=1, .., k1> 0. Proceeding as in,
e.g., the proof of [2, p. 382, Lemma 1], we see that for any £, k=0, 1, .., n,

det[v,(x)); 4, j=0, .., k]

=[O T et = 1y KT ) i) 5.

Xk —1

Since, moreover, {f},.. f,} is a weak Markov system on (a,b), the
conclusion readily follows. Q.E.D.
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Proof of corollary. From Theorem 2 there is a basis U, of Z, having
a representation of the form (1), where A(z) is strictly increasing, and the
w(t) are increasing on I(h(A)), and strictly increasing on /4(4). Setting
W, (x)=x and

h(x) pny In
Zaril)=[ [ [T () (1),

we readily obtain the conclusion. Q.ED.
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